Short Communications

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible. Publication will be quicker if the contributions are without illustrations.

Acta Cryst. (1970). B26, 1876

The crystal structure of Rh₂O₃. By J.M.D.COEY, Department of Physics, University of Manitoba, Winnipeg 19, Canada

(Received 19 February 1970)

The structure of the hexagonal form of Rh₂O₃ has been refined using powder methods. The space group is $R\overline{3}c$, and it has the corundum structure with $a_H = 5 \cdot 127 \pm 0.001$, $c_H = 13 \cdot 853 \pm 0.004$ Å, $x(O) = 0.295 \pm 0.010$ and $z(Rh) = 0.348 \pm 0.001$.

Rhodium sesquioxide has been found in two forms. A hexagonal form having the corundum structure with $a_R = 5.47$ Å and $\alpha = 55^{\circ}40'$ was identified first (Lunde, 1927). It transforms into an orthorhombic form described by Wold, Arnott & Croft (1963) when heated above 750°C. In this note X-ray powder diffraction results for the hexagonal form are presented.

The lattice parameters were obtained from photographs taken in a 114.6 mm Debye-Scherrer camera, and the integrated intensities of the reflexions in Table 1 were measured using a powder diffractometer. All measurements were made at 23 °C with Fe K α radiation. Our sample, a grey powder of reagent grade Rh₂O₃, was obtained from Alfa Inorganics, Beverly, Mass., U.S.A. It was reported to contain 80.91 % Rh and the only impurities which could be detected by X-ray fluorescence were 0.2% Pd, 0.1% Ru and 0.1% Sn. It was apparent from the diffractometer trace that roughly 10% of the oxide was in the orthorhombic form. However when the orthorhombic pattern was subtracted off, all the remaining lines could be assigned indices consistent with the space group $R\overline{3}c$. The overlapping was significant only for the hexagonal reflexions 012, 104, 110, 024, 211, 134 and 1,1,12.

Table 1, Powder pattern for Rh₂O₃ (hexagonal form)

1. 1		-	
C 1	dobs	d _{calc}	I/I_1
1 2	3.68 Å	3·738 Å	53
) 4	2.731	2.731	88
10	2.567	2.564	100
) 6	2.309	2.309	· 11
1 3	2.242	2.241	7
) 2	2.116	2.114	6.
2 4	1.870	1.869	. 37
16	1.717	1.716	53
[]]1-]	1.667	1.666	1
2 2	1.633	1.631	7
1 8 1	1.615	1.513	2
14	1.512	1.510	. 33
0 0	1.482	1.480	30
2 5	1.436	1.436	. 1
) 8	1.366	1.365	1
D 10)	1.321	1.322	16
19ĵ		1.320 ∫	
2 0)	1.281	1.282	15
1 7∫́		1 280 ∫	
3 6	1.245	1.246	16
23	1.236	1.235	1
12	1.213	1·213	4
	$ \begin{array}{c} c \\ c \\$	c l a_{obs} 1 2 3.68 Å 0 4 2.731 1 0 2.567 0 6 2.309 1 3 2.242 0 2 2.116 2 2 1.16 2 4 1.870 1 1 1.667 2 2 1.633 1 4 1.512 0 0 1.482 2 5 1.436 0 8 1.366 0 1.321 1.91 2 0 1.281 1 7 3 3 6 1.245 2 3 1.236 1 2 1.213	c l d_{obs} d_{calc} 1 2 3.68 Å 3.738 Å 0 4 2.731 2.731 1 0 2.567 2.564 0 6 2.309 2.309 1 3 2.242 2.241 0 2 2.116 2.114 2 2 1.667 1.669 1 1 1.667 1.666 2 2 1.633 1.631 1 1 1.667 1.666 2 2 1.633 1.631 4 1.512 1.513 1.436 0 0 1.482 1.480 2 5 1.436 1.436 0 0 1.482 1.480 2 5 1.436 1.322 1 9 1.320 1.320 2 0 1.281 1.282 1 7 1.280 1.280 3 6 1.245 1.246 2 </td

Table 1 (cont.)

* Estimated from photographs.

We find $a_H = 5.127 \pm 0.001$, $c_H = 13.853 \pm 0.004$ Å, the equivalent rhombohedral parameters being $a_R = 5.485$ Å and $\alpha = 55^{\circ}44'$. Z=6. The calculated density is 8.02 g.cm⁻³. In order to find the special position parameters for the oxygen and rhodium ions we used a computer to minimize the residual $R = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$ with respect to variations in B, the temperature factor, and u and w, the special position parameters for oxygen and rhodium in the rhombohedral structure factor. These factors were obtained from the integrated intensities using the relation $I \propto i [(1 + \cos^2 2\theta)/(\cos \theta)]$ $\sin^2 \theta$] $F^2 \exp[-B(\sin \theta/\lambda)^2]$ where j is the multiplicity of the reflexion. No correction was made for anomalous scattering. Only the 24 lines which were observed, resolved, and did not appreciably overlap orthorhombic lines were used in the calculation. The resulting values are $u(O) = 0.295 \pm 0.010$, $w(Rh) = 0.098 \pm 0.001$ and $B = 1.2 \pm 0.4$, the equivalent hexagonal parameters being $x(O) = 0.295 \pm 0.010$ and z(Rh) = 0.348 ± 0.001 . The corresponding value of R was 13.4%. Values of u, w, and B in agreement with these could also be obtained by minimizing $\Sigma w(|F_o| - |F_c|)^2$ regardless of whether w was taken as 1, F_0^{-2} , or a function similar to that proposed by Evans (1961). Finally we recalculated R using all 33 observed reflexions and found R = 13.2 %. The observed and calculated structure factors are listed in Table 2, and those used in the structure determination are marked with a dagger.

The structure may be considered as an arrangement of oxygen anions in hexagonal close packed layers, normal to the c axis, which has been distorted by the presence of small

SHORT COMMUNICATIONS

Table 2. Structure factors for Rh₂O₃ (hexagonal form)

h	k	l	F_{obs}	F_{calc}	h	k	l	$F_{\rm obs}$	F_{calc}
0	1	2	52.0	58.4	2	2	3†	27.9	-11.5
ĭ	Ô	4	96.2	-108.4	1	3	1†	10.5	- 3.5
î	ĭ	ò	156.9	127.2	3	1	2†	36.4	40.0
Ô	Ô	6†	104.7	- 85.8	1	2	8†	19.6	20.1
ĩ	ĩ	3+	35.9	26.5	0	2	10†	98.5	98.5
$\hat{2}$	Ô	2†	35.7	38.2	1	3	4	75.8	74.9
ō	2	4	101.8	-107.1	0	0	12†	66.0	61.8
ĭ	1	6†	135.8	-120.0	3	1	5		-3.2
2	1	1+	16.7	8.7	2	2	6†	113-4	- 92.1
1	$\hat{2}$	2+	37.3	38.0	0	4	2†	32.8	42.5
Ô	1	8+	28.8	29.3	2	1	10†	88.5	95.0
2	1	4†	87.3	-94.9	4	0	4†	70.8	- 66.1
3	Ō	0+	121.3	135.2	1	1	12	48.8	36.4
1	2	5†	13.9	7.4	3	2	1†	11.8	- 6.5
2	0	8†	20.5	19.3	2	3	2		26.1
1	Ō	10		112.4	1	2	11	<u> </u>	5.2
ī	1	9	_	15.7	3	1	8†	25.2	24.2
2	$\overline{2}$	Ō		100.8	2	2	9	_	- 9.1
2	1	7		6.5	3	2	4	76.1*	- 76.9
ō	3	6†	68.3	75.9					

* Estimated.

 \dagger These reflexions were used in the determination of u, w and B.

Table 3.	Cation-cation	separations	in	corundum	structure	sesquioxi	des
----------	---------------	-------------	----	----------	-----------	-----------	-----

Cation electron				
configuration	rc	r _c /сн	ra	r _a /ан
2p ⁶	2·65 Å	0.204	2·79 Å	0.586
$3d^{1}(t_{2e^{1}})$	2.59	0.190	2.99	0.581
$3d^2(t_{2g}^2)$	2.70	0.193	2.88	0.582
$3d^{3}(t_{2g}^{3})$	2.65	0.195	2.89	0.583
$4d^{6}(t_{2e}^{6})$	2.72	0.196	3.03	0.590
$3d^{5}(t_{2_{\mu}}^{3}e_{\mu}^{2})$	2.900	0.211	2.971	0.590
$3d^{10}(t_{2g}^{6}e_{g}^{4})$	2.835	0.211	2.938	0.590
	Cation electron $2p^6$ $3d^1 (t_{2g}^1)$ $3d^2 (t_{2g}^2)$ $3d^3 (t_{2g}^3)$ $4d^6 (t_{2g}^6)$ $3d^5 (t_{2g}^3e_g^2)$ $3d^{10} (t_{2g}^6e_g^4)$	Cation electron configuration r_c $2p^6$ 2.65 Å $3d^1 (t_{2g}^1)$ 2.59 $3d^2 (t_{2g}^2)$ 2.70 $3d^3 (t_{2g}^3)$ 2.65 $4d^6 (t_{2g}^6)$ 2.72 $3d^5 (t_{2g}^3e_g^2)$ 2.900 $3d^{10} (t_{2g}^6e_g^4)$ 2.835	Cation electron configuration r_c r_c/c_H $2p^6$ 2.65 Å 0.204 $3d^1 (t_{2g}^1)$ 2.59 0.190 $3d^2 (t_{2g}^2)$ 2.70 0.193 $3d^3 (t_{2g}^3)$ 2.65 0.195 $4d^6 (t_{2g}^6)$ 2.72 0.196 $3d^5 (t_{2g}^3e_g^2)$ 2.900 0.211 $3d^{10} (t_{2g}^6e_g^4)$ 2.835 0.211	Cation electron configuration r_c r_a/c_H r_a $2p^6$ 2.65 Å 0.204 2.79 Å $3d^1(t_{2g}^1)$ 2.59 0.190 2.99 $3d^2(t_{2g}^2)$ 2.70 0.193 2.88 $3d^3(t_{2g}^3)$ 2.65 0.195 2.89 $4d^6(t_{2g}^6)$ 2.72 0.196 3.03 $3d^5(t_{2g}^3e_g^2)$ 2.900 0.211 2.971 $3d^{10}(t_{2g}^6e_g^4)$ 2.835 0.211 2.938

rhodium cations in two thirds of the octahedral interstices. Compared with α -Fe₂O₃ (Blake, Hessevick, Zoltai & Finger, 1966), the cations lie closer to the planes mid-way between the oxygen layers, and the oxygen octahedra are more distorted since Rh³⁺ is a larger ion than Fe³⁺. Each rhodium ion has 6 oxygen neighbours, three at 2.03 ± 0.03 Å and three at 2.07 ± 0.04 Å. Within an oxygen octahedron the distance between oxygen ions in the same layer is either 2.62 ± 0.09 or 3.14 ± 0.05 Å and the distance between adjacent oxygen ions in different layers is 2.78 ± 0.02 or $2.94 \pm$ 0.02 Å. The separation of a c-axis cation pair, r_c , is $2.72 \pm$ 0.02 Å and of a 'basal plane' pair, r_a , is 3.03 ± 0.01 Å. In Table 3 these distances are compared with those found in other sesquioxides with the corundum structure using some of the data of Newnham & de Haan (1962), and Marezio & Remeika (1967).

This work was supported by the National Research Council of Canada.

References

- BLAKE, R. L., HESSEVICK, R. E., ZOLTAI, T. & FINGER, L. W. (1966). Amer. Min. 51, 123.
- EVANS, H. T. (1961). Acta Cryst. 14, 689.
- LUNDE, G. (1927). Z. anorg. allg. Chem. 163, 345.
- MAREZIO, M. & REMEIKA, J. P. (1967). J. Chem. Phys. 46, 1862.
- NEWNHAM, R. E. & HAAN, Y. M. DE (1962). Z. Kristallogr. 117, 235.
- Wold, A., ARNOTT, R. J. & CROFT, W. J. (1963). Inorg. Chem. 2, 972.