Short Communications

Contributions intended for publisation under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible. Publication will be quicker if the contributions are without illustrations.

Acta Cryst. (1970). B26, 1876
The crystal structure of $\mathbf{R h}_{2} \mathbf{O}_{3}$. By J.M.D.Coey, Department of Physics, University of Manitoba, Winnipeg 19, Canada
(Received 19 February 1970)
The structure of the hexagonal form of $\mathrm{Rh}_{2} \mathrm{O}_{3}$ has been refined using powder methods. The space group is $R \overline{3} c$, and it has the corundum structure with $a_{H}=5.127 \pm 0.001, c_{H}=13.853 \pm 0.004 \AA, x(\mathrm{O})=0.295 \pm 0.010$ and $z(\mathrm{Rh})=0.348 \pm 0.001$.

Rhodium sesquioxide has been found in two forms. A hexagonal form having the corundum structure with $a_{R}=$ $5.47 \AA$ and $\alpha=55^{\circ} 40^{\prime}$ was identified first (Lunde, 1927). It transforms into an orthorhombic form described by Wold, Arnott \& Croft (1963) when heated above $750^{\circ} \mathrm{C}$. In this note X-ray powder diffraction results for the hexagonal form are presented.

The lattice parameters were obtained from photographs taken in a 114.6 mm Debye-Scherrer camera, and the integrated intensities of the reflexions in Table 1 were measured using a powder diffractometer. All measurements were made at $23^{\circ} \mathrm{C}$ with $\mathrm{Fe} K \alpha$ radiation. Our sample, a grey powder of reagent grade $\mathrm{Rh}_{2} \mathrm{O}_{3}$, was obtained from Alfa Inorganics, Beverly, Mass., U.S.A. It was reported to contain 80.91 \% Rh and the only impurities which could be detected by X-ray fluorescence were $0.2 \% \mathrm{Pd}, 0.1 \% \mathrm{Ru}$ and $0.1 \% \mathrm{Sn}$. It was apparent from the diffractometer trace that roughly 10% of the oxide was in the orthorhombic form. However when the orthorhombic pattern was subtracted off, all the remaining lines could be assigned indices consistent with the space group $R \overline{3} c$. The overlapping was significant only for the hexagonal reflexions $012,104,110,024,211,134$ and 1,1,12.

Table 1. Powder pattern for $\mathrm{Rh}_{2} \mathrm{O}_{3}$ (hexagonal form)

h	k	l	$d_{\text {obs }}$	$d_{\text {calc }}$	I / I_{1}
0	1	2	3.68 A	3.738 A	53
1	0	4	2.731	2.731	88
1	1	0	$2 \cdot 567$	$2 \cdot 564$	100
0	0	6	$2 \cdot 309$.	$2 \cdot 309$	11
1	1	3	$2 \cdot 242$	$2 \cdot 241$	7
2	0	2	2.116	$2 \cdot 114$	6
0	2	4	1.870	1.869	37
1	1	6	1.717	1.716	53
2	1	1.	1.667	1.666	1
1	2	2	1.633	1.631	7
0	1	8	1.615	1.513	2
2	1	4	1.512	1.510	33
3	0	0	$1 \cdot 482$	$1 \cdot 480$	30
1	2	5	$1 \cdot 436$	$1 \cdot 436$	- 1
2	0	8	$1 \cdot 366$	$1 \cdot 365$	1
1	0	10	$1 \cdot 321$	$1 \cdot 322$)	16
1	1	9		$1 \cdot 320$	
2	2	0	1.281	$1 \cdot 282$.	15
2	1	7)		$1 \cdot 280\}$	
0	3	6	1.245	1.246	16
2	2	3	1.236	1.235	1
3	1	2	$1 \cdot 213$	$1 \cdot 213$	4

Table 1 (cont.)

h	$k \quad l$	$d_{\text {obs }}$	$d_{\text {calc }}$	J / I_{1}
1	28	1.205	$1 \cdot 205$	1
0	210	$1 \cdot 175$	$1 \cdot 175$	17
1	34	$1 \cdot 161$	$1 \cdot 160$	22
0	012	$1 \cdot 154$	$1 \cdot 154$	1
2	26	$1 \cdot 121$	$1 \cdot 121$	25
0	42	1.096	1.096	2
2	110	1.068	1.068	36
4	04	1.057	1.057	12
1	112	1.053	1.053	6
3	21	1.014	1.016	1
2	$\begin{array}{ll}3 & 2\end{array}$	1.008	1.008 \}	4
1	$211\}$		1.007 \}	
3	18	1.003	1.004	5
3	24	0.9773	0.9773	90^{*}

We find $a_{H}=5.127 \pm 0.001, c_{H}=13.853 \pm 0.004 \AA$, the equivalent rhombohedral parameters being $a_{R}=5.485 \AA$ and $\alpha=55^{\circ} 44^{\prime} . Z=6$. The calculated density is $8.02 \mathrm{~g} . \mathrm{cm}^{-3}$. In order to find the special position parameters for the oxygen and rhodium ions we used a computer to minimize the residual $R=\Sigma| | F_{o}\left|-\left|F_{c}\right| / \Sigma\right| F_{o} \mid$ with respect to variations in B, the temperature factor, and u and w, the special position parameters for oxygen and rhodium in the rhombohedral structure factor. These factors were obtained from the integrated intensities using the relation $I \propto j\left[\left(1+\cos ^{2} 2 \theta\right) /(\cos \theta\right.$ $\left.\left.\sin ^{2} \theta\right)\right] F^{2} \exp \left[-B(\sin \theta / \lambda)^{2}\right]$ where j is the multiplicity of the reflexion. No correction was made for anomalous scattering. Only the 24 lines which were observed, resolved, and did not appreciably overlap orthorhombic lines were used in the calculation. The resulting values are $u(O)=0.295 \pm 0.010$, $w(\mathrm{Rh})=0.098 \pm 0.001$ and $B=1.2 \pm 0.4$, the equivalent hexagonal parameters being $x(\mathrm{O})=0.295 \pm 0.010$ and $z(\mathrm{Rh})=$ $0 \cdot 348 \pm 0 \cdot 001$. The corresponding value of R was $13 \cdot 4 \%$. Values of u, w, and B in agreement with these could also be obtained by minimizing $\Sigma w\left(\left|F_{0}\right|-\left|F_{c}\right|\right)^{2}$ regardless of whether \dot{w} was taken as $1, F_{o}{ }^{-2}$, or a function similar to that proposed by Evans (1961). Finally we recalculated R using all 33 observed reflexions and found $R=13 \cdot 2 \%$. The observed and calculated structure factors are listed in Table 2 , and those used in the structure determination are marked with a dagger.

The structure may be considered as an arrangement of oxygen anions in hexagonal close packed layers, normal to the c axis, which has been distorted by the presence of small

Table 2. Structure factors for $\mathrm{Rh}_{2} \mathrm{O}_{3}$ (hexagonal form)

h	k	l	$F_{\text {obs }}$	$F_{\text {calc }}$	h	$k l$	$F_{\text {obs }}$	$F_{\text {calc }}$
0	1	2	52.0	58.4	2	$23 \dagger$	$27 \cdot 9$	-11.5
1	0	4	96.2	-108.4	1	$31 \dagger$	$10 \cdot 5$	-3.5
1	1	0	156.9	127.2	3	$1 \begin{array}{ll}1 \\ \\ \\ \end{array}$	$36 \cdot 4$	$40 \cdot 0$
0	0	$6 \dagger$	104.7	-85.8	1	$28 \dagger$	$19 \cdot 6$	$20 \cdot 1$
1	1	$3 \dagger$	$35 \cdot 9$	$26 \cdot 5$	0	$210 \dagger$	98.5	98.5
2	0	$2 \dagger$	$35 \cdot 7$	38.2	1	34	$75 \cdot 8$	-74.9
0	2	4	101.8	$-107 \cdot 1$	0	$012 \dagger$	66.0	$61 \cdot 8$
1	1	$6 \dagger$	$135 \cdot 8$	-120.0	3	15	-	-3.2
2	1	$1 \dagger$	$16 \cdot 7$	8.7	2	$26 \dagger$	$113 \cdot 4$	-92.1
1	2	$2 \dagger$	$37 \cdot 3$	38.0	0	4 2†	$32 \cdot 8$	$42 \cdot 5$
0	1	$8 \dagger$	28.8	29.3	2	$110 \dagger$	88.5	95.0
2	1	$4 \dagger$	$87 \cdot 3$	-94.9	4	$0{ }^{4} \dagger$	$70 \cdot 8$	-66.1
3	0	$0 \dagger$	121.3	$135 \cdot 2$	1	112	48.8	$36 \cdot 4$
1	2	$5 \dagger$	$13 \cdot 9$	$7 \cdot 4$	3	$21 \dagger$	$11 \cdot 8$	-6.5
2	0	${ }^{8} \dagger$	$20 \cdot 5$	$19 \cdot 3$	2	312	-	$26 \cdot 1$
1	0	10	-	112.4	1	211	二	5.2
1	1	9	-	$15 \cdot 7$	3	$18 \dagger$	$25 \cdot 2$	$24 \cdot 2$
2	2	0	-	$100 \cdot 8$	2	29	-	-9.1
2	1	7	-	$6 \cdot 5$	3	24	76.1*	-76.9
0	3	$6 \dagger$	$68 \cdot 3$	--75.9				

* Estimated.
\dagger These reflexions were used in the determination of u, w and B.

Table 3. Cation-cation separations in corundum structure sesquioxides

Oxide	Cation electron configuration	r_{c}	r_{c} / c_{H}	$r a$	r_{a} / a_{H}
$\mathrm{Al}_{2} \mathrm{O}_{3}$	$2 p^{6}$	2.65 Å	$0 \cdot 204$	2.79 A	0.586
$\mathrm{Ti}_{2} \mathrm{O}_{3}$	$3 d^{1}\left(t_{28}{ }^{1}\right)$	$2 \cdot 59$	$0 \cdot 190$	2.99	0.581
$\mathrm{V}_{2} \mathrm{O}_{3}$	$3 d^{2}\left(t_{2 g^{2}}\right)$	2.70	$0 \cdot 193$	$2 \cdot 88$	0.582
$\mathrm{Cr}_{2} \mathrm{O}_{3}$	$3 d^{3}\left(t_{2 g^{3}}{ }^{\text {a }}\right.$	$2 \cdot 65$	0.195	$2 \cdot 89$	0.583
$\mathrm{Rh}_{2} \mathrm{O}_{3}$	$4 d^{6}\left(t_{28}{ }^{6}\right)$	$2 \cdot 72$	0.196	3.03	0.590
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	$3 d^{5}\left(t_{2 g}{ }^{3} e^{2}{ }^{2}\right)$	2.900	0.211	2.971	$0 \cdot 590$
$\mathrm{Ga}_{2} \mathrm{O}_{3}$	$3 d^{10}\left(t_{28} e^{6} e^{4}\right)$	2.835	$0 \cdot 211$	2.938	$0 \cdot 590$

rhodium cations in two thirds of the octahedral interstices. Compared with $\alpha-\mathrm{Fe}_{2} \mathrm{O}_{3}$ (Blake, Hessevick, Zoltai \& Finger, 1966), the cations lie closer to the planes mid-way between the oxygen layers, and the oxygen octahedra are more distorted since Rh^{3+} is a larger ion than Fe^{3+}. Each rhodium ion has 6 oxygen neighbours, three at $2.03 \pm 0.03 \AA$ and three at $2.07 \pm 0.04 \AA$. Within an oxygen octahedron the distance between oxygen ions in the same layer is either 2.62 ± 0.09 or $3.14 \pm 0.05 \AA$ and the distance between adjacent oxygen ions in different layers is 2.78 ± 0.02 or $2.94 \pm$ $0.02 \AA$. The separation of a c-axis cation pair, r_{c}, is $2.72 \pm$ $0.02 \AA$ and of a 'basal plane' pair, r_{a}, is $3.03 \pm 0.01 \AA$. In Table 3 these distances are compared with those found in other sesquioxides with the corundum structure using some of the data of Newnham \& de Haan (1962), and Marezio \& Remeika (1967).

This work was supported by the National Research Cour:cil of Canada.

References

Blake, R. L., Hessevick, R. E., Zoltar, T. \& Finger, L. W. (1966). Amer. Min. 51, 123.

Evans, H. T. (1961). Acta Cryst. 14, 689.
Lunde, G. (1927). Z. anorg. allg. Chem. 163, 345.
Marezio, M. \& Remeika, J. P. (1967). J. Chem. Phys. 46, 1862.

Newnham, R. E. \& HaAN, Y. M. de (1962). Z. Kristallogr. 117, 235.
Wold, A., Arnott, R. J. \& Croft, W. J. (1963). Inorg. Chem. 2, 972.

